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Motivation

Study constant scalar curvature Kähler metrics

Study special Lagrangian submanifolds on Calabi-Yau
manifolds.



Constant scalar curvature Kähler metric

Question (Calabi)

Let (Mn, J, ω0) be a Kähler manifold. When does there exist ϕ
such that the scalar curvature Rωϕ of the metric

ωϕ = ω0 + i∂∂̄ϕ > 0

is a constant?

Remark (Chern-Weil)

If Rωϕ is a constant, then it equals to

R =
2πnc1(M) · [ω0]

n−1

[ω0]n
.



Calabi-Yau manifold

Special case:

Theorem (Calabi’s conjecture, Yau’s theorem)

Let (Mn, J, ω0,Ω) be a Kähler manifold with a holomorphic
(n, 0)-form. Then there exist ϕ such that

ωnϕ = cΩ ∧ Ω̄

for a constant c.

In honor of Calabi and Yau, (Mn, J, ωϕ,Ω) is called a
Calabi-Yau manifold. Its Ricci curvature is zero and therefore,
is a special case of constant scalar curvature Kähler metrics.
Calabi-Yau metrics play an important role in mathematical
physics.



Special Lagrangian

Definition (Harvey-Lawson)

A submanifold L with real dimension n is called a special
Lagrangian submanifold of a Calabi-Yau manifold (Mn, J, ω,Ω)

if ω|L = 0 and Im(e−iθ̂Ω)|L = 0 for a constant θ̂.



Deformed Hermitian-Yang-Mills equation

Theorem (Harvey-Lawson)

Let F be a function from Rn to R. Then
∇F : Rn = ReCn → Rn = ImCn. The the graph of ∇F is a
special Lagragian submanifold in Cn if and only if

Im(e−iθ̂ det(I + iHessF )) = 0.

Definition

Let (Mn, J, χ) be a Kähler manifold with a Kähler metric χ and
a closed (1,1)-form ω0. Then we say that ωϕ = ω0 + i∂∂̄ϕ
satisfies the deformed Hermitian-Yang-Mills equation if

Im(e−iθ̂(χ+ iωϕ)n) = 0.



Mirror symmetry

By Mariño-Minasian-Moore-Strominger and Leung-Yau-Zaslow,
the dHYM equation on a Calabi-Yau manifold is mirror to the
special Lagrangian equation on the mirror Calabi-Yau manifold.
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Limit of dHYM equation

In local coordinates,

χ =
√
−1

n∑
i=1

dzi ∧ dz̄i, ωϕ =
√
−1

n∑
i=1

λidz
i ∧ dz̄i,

then the dHYM equation is the same as

n∑
i=1

arctan(λi) = θ̂ mod 2π.

In “small radius limit”,

lim
t→∞

π
2 −

∑n
i=1 arctan(tλi)

t
=

n∑
i=1

1

λi
.

n∑
i=1

1

λi
= c

is called the J-equation.



Limit of dHYM equation

In “large radius limit”,

lim
t→0

∑n
i=1 arctan(tλi)

t
=

n∑
i=1

λi.

When ωϕ is the curvature F of a line bundle,

n∑
i=1

λi = trχF = c

is the Hermitian-Yang-Mills equation.

Theorem (Donaldson, Uhlenbeck-Yau)

The Hermitian-Yang-Mills equation is solvable if and only if the
vector bundle is stable.

Question

How about the deformed Hermitian-Yang-Mills equation and the
J-equation?



Constant scalar curvature Kähler metric

Calabi: Let (Mn, J, ω0) be a Kähler manifold. When does
there exist a Kähler form ωϕ ∈ [ω0] such that the scalar
curvature Rωϕ is a constant?

Special case: Kähler-Einstein.

Yau: When c1(M) = 0, there always exists a Kähler
Ricci-flat metric in [ω0].

Aubin, Yau: When c1(M) = −[ω0] < 0, there always exists
a Kähler-Einstein metric in [ω0].

Matsushima, Futaki: When c1(M) = [ω0] > 0, there may
not exist any Kähler-Einstein metric in [ω0].

Yau’s conjecture (Motivated by Donaldson-Uhlenbeck-Yau
theorem): When c1(M) = [ω0] > 0, there exists a
Kähler-Einstein metric in [ω0] if and only if it is stable.



Variational approach to cscK problem

Theorem (Mabuchi)

Let (Mn, J, ω0) be a Kähler manifold. Then there exists a
convex functional

K : H = {ϕ : ωϕ = ω0 +
√
−1∂∂̄ϕ > 0} → R

such that

δK =

∫
M

(R−Rωϕ)δϕ
ωnϕ
n!
.

The critical points of the K-energy functional are constant
scalar curvature metrics

Rωϕ = R =
2πnc1(M) · [ω0]

n−1

[ω0]n
.



Variational approach to cscK problem

Theorem (Chen)

K(ϕ) =

∫
M

log(
ωnϕ
ωn0

)ωnϕ + J−Ric(ω0)(ϕ).

In general, if Mn is a Kähler manifold and χ is a closed
(1,1)-form, then

Jχ(ϕ) =
1

n!

∫
M
ϕ

n−1∑
k=0

χ∧ωk0∧ωn−1−kϕ − c0
(n+ 1)!

∫
M
ϕ

n∑
k=0

ωk0∧ωn−kϕ ,

and c0 is the constant given by∫
M
χ ∧ ωn−10

(n− 1)!
− c0

ωn0
n!

= 0.

Jχ(ϕ) is also convex if χ > 0.



J-equation

Proposition (Chen)

The ϕ is the critical point for Jχ if and only if it satisfies the
J-equation

trωϕχ =

n∑
i=1

1

λi
= c0

We get the J-equation from the cscK problem!
Even though this talk focus on the study of the J-equation and
the dHYM using ideas from cscK equations, I would like to
remark that the J-equation first appeared in Donaldson’s study
of symplectic geometry and Chen’s study of cscK equation was
the second appearance.



Coerciveness and uniform geodesic stability

Question

When does a convex functional has a critical point?

Lemma (Coerciveness)

A smooth strictly convex function F on Rn has a critical point
if and only if there exist constants ε > 0 and C such that

F (x) ≥ ε|x|+ C.

Lemma (Uniform geodesic stability)

A smooth Lipschitz strictly convex function F on Rn has a
critical point if and only if there exist constants ε > 0 such that

lim
t→∞

F (x+ αt)

t
≥ ε lim

t→∞

|x+ αt|
t

= ε|α|

for all geodesic x+ αt on Rn.



Geodesic stability and stability

Lemma (Uniform geodesic stability)

A smooth Lipschitz strictly convex function F on Rn has a
critical point if and only if there exist constants ε > 0 such that

lim
t→∞

F (x+ αt)

t
≥ ε lim

t→∞

|x+ αt|
t

= ε|α|

for all geodesic x+ αt on Rn.

Lemma (Uniform stability)

A smooth Lipschitz strictly convex function F on Rn has a
critical point if and only if there exist constants ε > 0 such that

lim
t→∞

F (x+ αt)

t
≥ ε lim

t→∞

|x+ αt|
t

= ε|α|

for all geodesic x+ αt on Rn when α ∈ Qn.



Coerciveness

On the space of Kähler potentials H, trωϕω0 = n is trivially

solvable, so Jω0(ϕ) plays the role of
√
|x|2 + 1 on Rn. Strict

convexity means no holomorphic vector fields.

Definition

A functional F on H is called a coercive functional if there exist
constants ε and C such that F (ϕ) ≥ εJω0(ϕ) + C.

Theorem (Tian ⇒, Ding-Tian ⇐)

Existence of a Fano Kähler-Einstein metric ⇐⇒ Coerciveness
of K-energy.

Theorem (Darvas-Rubinstein ⇒, Chen-Cheng ⇐)

Existence of a constant scalar curvature Kähler metric ⇐⇒
Coerciveness of K-energy.



Coerciveness and uniform stability

Theorem (Collins-Székelyhidi)

Let χ, ω0 be Kähler forms on M , then
trωϕχ = c0 is solvable ⇐⇒ Jχ is coercive.

Trouble: It’s very hard to verify coerciveness, sometimes as
hard as solving the equation directly!

Theorem (Coerciveness ⇒ Uniformly geodesic stability is
trivial, Chen-Cheng ⇐)

Existence of a constant scalar curvature Kähler metric ⇐⇒
geodesic stability.

Idea of Chen-Cheng’s result: Twist the cscK equation
R(ωϕ) = R with the J-equation trωϕχ = c0 to get the twisted
cscK equation

−tR(ωϕ) + (1− t)trωϕχ = −tR+ (1− t)c0.



Uniform stability

Lemma (Uniform stability)

A smooth Lipschitz strictly convex function F on Rn has a
critical point if and only if there exist constants ε > 0 such that

lim
t→∞

F (x+ αt)

t
≥ ε lim

t→∞

|x+ αt|
t

= ε|α|

for all geodesic x+ αt on Rn when α ∈ Qn.

It is still hard to verify geodesic stability because the it’s hard
to write down ALL geodesics explicitly. So we want a analogy
of the “rational slope geodesic” in Rn. They are called test
configuration. The slope limt→∞

K(ϕt)
t is called the

Donaldson-Futaki invariant.



Coerciveness and uniform stability

Definition (Yau,Tian,Donaldson,Sjöstrom
Dyrefelt,Dervan-Ross)

(M,J, [ω0]) is called uniformly K-stable if there exists ε > 0
such that for any test configuration X , the Donaldson-Futaki
invariant DF (X ) is larger than ε times the slope for Jω0 .

Theorem (Chen-Donaldson-Sun)

K-stability ⇐⇒ the existence of Fano Kähler-Einstein metric.

Definition (Ross-Thomas)

Any subvariety V of M induces a test configuration. The
uniform stability among those geodesics is called the uniform
slope stability.

Same definition holds for Jχ functional.



Uniform stability and uniform slope stability

Not known whether uniform stability is enough for cscK
problem. As for uniform slope stability, it’s not even known for
Fano Kähler-Einstein metrics.
People still hope to solve this problem using twisted cscK
equation. Not known even for J-equation before my work.



Main theorem

Theorem (C.)

The followings are equivalent:

1 The J-equation trωϕχ = c is solvable.

2 The Jχ functional is coercive.

3 [ω0] is uniformly Jχ geodesic stable.

4 [ω0] is uniformly Jχ stable for all test configurations.

5 [ω0] is uniformly Jχ slope stable for all subvarieties.

6
∫
V c0ω

p
0 − pχ ∧ ω

p−1
0 ≥ ε(n− p)

∫
V ω

p
0.

(1) ⇐⇒ (2) is due to Collins-Székelyhidi. (2)⇒ (3) is the
definition for geodesic stability. (3)⇒ (4) is the definition of
stability for all test configurations by Yau, Tian, Donaldson,
Sjöstrom Dyrefelt, Dervan-Ross. (4)⇒ (5) is the definition of
slope stability similar to Ross-Thomas. (5)⇒ (6) is due to
Lejmi-Székelyhidi. Only (6)⇒ (1) is new.



dHYM equation

The condition c0ω
p
0 − pχ ∧ ω

p−1
0 ≥ ε(n− p)ωp0 is equivalent to

1
λi1

+ ... 1
λip
≤ c0 − (n− p)ε. My main contribution is that∫

V
c0ω

p
0 − pχ ∧ ω

p−1
0 ≥ ε(n− p)

∫
V
ωp0

implies the solvability of the J-equation.
For deformed Hermitian-Yang-Mills equation∑n

i=1(
π
2 − arctanλi) = θ̂, the corresponding inequality is

π

2
− arctanλi1 + ...+

π

2
− arctanλip ≤ θ̂ − (n− p)ε.

When 0 < θ̂ < π (supercritical case), I proved that a similar
uniform inequality about integrals on subvarieties implies the
solvability of the dHYM equation. The actual statement of the
theorem involves the technical issue of dealing with mod 2π
and is too complicated to discuss here, see [Chen, The
J-equation and the supercritical deformed Hermitian-Yang-Mills
equation, Inv. Math. (2021)] for more details.



Generalized Monge-Ampère equation

Conjecture (Lemji-Székelyhidi)

The J-equation cωnϕ = nχ ∧ ωn−1ϕ is solvable if and only if∫
V cω

p
0 − pχ ∧ ω

p−1
0 > 0 for all p < n.

Conjecture (Székelyhidi)

The generalized Monge-Ampère equation
ωnϕ =

∑n−1
k=0 ckχ

n−k ∧ ωkϕ is solvable if and only if∫
V ω

p
0 −

∑n−1
k=n−p

ckk!
n!

p!
(k+p−n)!χ

n−k ∧ ωk+p−n0 > 0 for all p < n.

Datar-Pingali generalized my method and solved Székelyhidi’s
conjecture on projective manifolds in July 2020. Song
generalized my method and solved Lemji-Székelyhidi’s
conjecture for the J-equation without the projective assumption
in December 2020.



Idea of proof

By a generalization of Song-Weinkove to reduce the problem to
the search of ωϕ such that 1

λi1
+ ... 1

λin−1
< c0 for all

i1 < ... < in−1.
Use the continuity method: Solve trωtχ+ ct

χn

ωn
t

= c0 for

ωt ∈ [tω0]. (This path originates in the solution of
Lemji-Székelyhidi’s conjecture in the toric case by
Collins-Székelyhidi.) It’s solvable for large t and it’s open by
the first step. To prove the closeness, we trivially get a current
satisfying the equation. We need a smoothing.



B locki and Ko lodziej’s smoothing method

On Cn, a current can be smoothed by convolution with the
modifier. We need to glue the local potential functions.
Consider −

√
−1

∑n
i=1 dzi ∧ dz̄i on the torus T 2n = Cn/Z2n.

Then we choose finitely many points pj on T 2n. The local
potential near pj is −|z − pj |2. Then

√
−1∂∂̄max{−|z − p1|2,−|z − p2|2, ...}

is in the zero class. The main benefit of the shift from
[−
√
−1dzi ∧ dz̄i] to the zero class is that

max{−|z − p1|2,−|z − p2|2, ...} cannot be affected by the
function −|z − pj |2 away from pj so that we do not need to
worry about the fact that −|z − pj |2 can only be defined locally.
So if we are allowed to change the Kähler class a little bit, then
we can glue the local potentials as long as they are close to each
other.



B locki and Ko lodziej’s smoothing method

The difference between the local potentials is small if the
Lelong number ν(x) is small.

Theorem (Siu)

For any ε > 0, {x : ν(x) ≥ ε} is a subvariety.

This is how the stability conditions on subvarieties come in!
We still need to figure out how to adjust the Kähler class a
little bit.



Demailly-Paun’s theorem

Theorem (Demailly-Paun)

Let X be a compact Kähler manifold. Then the Kähler cone K
of X is one of the connected components of the set P of real
(1,1)-cohomology classes [α] which are numerically positive on
analytic cycles, i.e. such that

∫
Y α

p > 0 for every irreducible
analytic set Y in X, p = dimY .

Proposition (Demailly-Paun)

Any nef and big class contains a Kähler current.



Demailly-Paun’s idea

Proposition (Demailly-Paun)

Any nef and big class contains a Kähler current.

Definition

If χ is a Kähler class and α is a closed (1,1)-form on M . Then
[α] is called nef and big if

∫
M αn > 0 and there exists a smooth

Kähler form in [α+ tχ] for all t > 0. αϕ is called a Kähler
current if there exists ε > 0 such that α− εχ is a positive
current.

Idea: Use Yau’s solution to the Calabi conjecture to get
(α+ tχ+ i∂∂̄ϕt)

n = fχn. By choosing f properly, we can
concentrate the mass of α+ tχ+ i∂∂̄ϕt. When we concentrate
the mass on the diagonal inside M ×M , then the push down of
it is a Kähler current.



Sketch of the proof

I use Demailly-Paun’s idea to get the extra εχ to apply
B locki and Ko lodziej’s smoothing method to get a smooth
subsolution. Then a minor generalization of
Song-Weinkove’s method provides the smooth solution.
This is the idea to solve the J-equation.

For the dHYM equation in the supercritical case, we get
the solution from a subsolution as a minor generalization of
Székelyhidi’s method (Székelyhidi’s method is a
generalization of Caffarelli-Nirenberg-Spruck’s estimate)
and also Collins-Jacob-Yau’s method. A technical
observation that tan(nπ2 −

∑
i arctan(λi)) is convex is due

to Takahashi.



Open problems

Question

How about the special Lagrangian equation?

Question

How about the twisted cscK equation and the cscK equation?

Question

How about coassociative submanifolds on a G2-manifold?

The product of a special Lagrangian submanifold with S1 is a
coassociative submanifold.

Question

How about the deformed G2-instanton equation?

The product of a solution of the dHYM equation with S1 is a
solution of the deformed G2-instanton equation.



Thanks

Thank you for your attention!


